博弈论答案(第二期)

修改于2019/06/14516 浏览综合
1.
题目:1×2×3×4×5×...×2018×2019(即2019!)末尾有几个0?你能给出通用简便的方法吗?
解:此类问题的本质是求质因数的5的个数。
原理是:
末尾一个零表示一个进位,则相当于乘以10。而10 是由2×5所得。因此只有质数2和5相乘能产生0,别的任何两个质数相乘都不能产生0,而且2、5相乘只产生一个0。
所以,分解后的整个因数式中有多少对(2, 5),结果中就有多少个0,而分解的结果中,2的个数显然是多于5的,因此,有多少个5,就有多少个(2, 5)对。
所以,讨论2019的阶乘末尾有几个0的问题,就被转换成了1到2019所有这些数的质因数分解式有多少个5的问题。
所以2019!末尾零的个数为:
⌊2019/5⌋=403
⌊403/5⌋=80
⌊80/5⌋=16
⌊16/5⌋=3
403+80+16+3
=502
扩展到N!也是一样的方法。
注:
向下取整用数学符号⌊⌋表示;
向上取整用数学符号⌈⌉表示。
⌊59/60⌋=0
⌈59/60⌉=1
⌊-59/60⌋=-1
⌈-59/60⌉=0
2.
题目:警察把甲乙分开关押,并在提审时分别告之,如果你坦白而他不坦白,那么你将只判0年,他将被判8年;如果你不坦白而他坦白,那么你判8年,他判0年;如果你们两人都坦白了,各判5年;如果你们两人都不坦白了,各判1年。请问他们分别选择什么策略?为什么?
分析:
每个博弈方选择自己的策略时,虽然无法知道另一方的实际选择,但他却不能忽视另一方的选择对他自己的得益的影响,因此他应该考虑到另一方有两种可能的选择,并分别考虑自己相应的最佳策略。
对囚徒A来说,囚徒B有坦白和不坦白两种可能的选择,假设囚徒B的选择是不坦白,则对囚徒A来说,不坦白得益为-1,坦白得益为0,他应该选择坦白;假设囚徒B选择的是坦白,则囚徒A不坦白得益为-8,坦白得益为-5,他还是该选择坦白。
因此,在此博弈中,无论囚徒B采取何种策略囚徒A的选择只有一种,即坦白,因为在另一方两种可能的情况下,坦白给自己带来的得益都是较大的。同样的道理,囚徒B的唯一的选择也是坦白。
所以最可能的结局:该博弈的最终结果是两博弈方同选择坦白策略。
3.
题目:5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,依此类推。海盗在自己的收益最大化的前提下乐意看到其他海盗被扔入大海喂鲨鱼,假定每个海盗都是绝顶聪明且很理智,那么第一个海盗提出怎样的分配方案才能够使自己的收益最大化?(有能力的可以考虑N个海盗P枚金币,编写出一个程序实现)
分析:
逆推法,从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。所以,4号惟有支持3号才能保命。
3号知道这一点,就会提出“100,0,0”的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。
不过,2号推知3号的方案,就会提出“98,0,1,1”的方案,即放弃3号,而给予4号和5号各一枚金币。由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。这样,2号将拿走98枚金币。
同样,2号的方案也会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。这无疑是1号能够获取最大收益的方案了!
答案是:1号强盗分给3号1枚金币,分给4号或5号强盗2枚,自己独得97枚。
分配方案可写成(97,0,1,2,0)或(97,0,1,0,2)
9
5
8